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In this article, we present MLP, a MATLAB toolbox 
enabling auditory threshold estimation via the adaptive 
maximum likelihood (ML) procedure proposed by David 
Green (1990, 1993). This procedure is particularly suitable 
for estimating thresholds with an optimal compromise be-
tween accuracy and rapidity. For this reason, the ML pro-
cedure has been used successfully in clinical contexts (e.g., 
Florentine, Buus, & Geng, 2000), in studies with children 
(e.g., Wright et al., 1997), and in studies with a large num-
ber of subjects (e.g., Amitay, Irwin, & Moore, 2006). For 
the same reason, it is suitable for those studies in which 
subjects perform various tasks—that is, when each task 
has to consume only a portion of the subject’s time. The 
ML procedure is largely known, used, and appreciated by 
the auditory community; it has collected more than 120 
citations, and the majority of these citations have come 
from journals specializing in auditory research.1 Thus, the 
user of this procedure can benefit from a large background 
literature to optimize his/her own threshold estimation. As 
far as we know, MLP is the first software implementing an 
adaptive psychophysical procedure with a graphical inter-
face in a freely downloadable version, and it is provided 
with several built-in, classic psychoacoustics experiments 
ready to use at a mouse click.

In the next section, we will give a short introduction of 
threshold estimation theory. The reader familiar with these 
concepts may wish to skip this section. The ML procedure 
and the MLP toolbox will be illustrated after this section.

Sensory Threshold Estimation Theory
Sensation moves within and across two types of thresh-

olds: detection and discrimination. The detection thresh-

old is the minimum detectable stimulus level,2 in the ab-
sence of any other stimuli of the same sort. In other words, 
the detection threshold marks the beginning of the sensa-
tion of a given stimulus. The discrimination threshold is 
the minimum detectable difference between two stimuli 
levels. Therefore, for a given sensory continuum, the dis-
crimination threshold cuts the sensory continuum into the 
steps into which it is divided.

The detection threshold can be estimated either via yes/
no tasks or via multiple-alternative forced choice tasks 
(in brief, nAFC, with n being the number of alternatives). 
The discrimination threshold, on the contrary, must be 
estimated exclusively via multiple nAFC tasks. In yes/
no tasks, the subject is presented with a succession of 
different stimulus levels (spanning from below to above 
the subject’s detection threshold) and is asked to report 
whether he or she has detected the stimulus ( yes) or not 
(no). In an nAFC task, the subject is presented with a 
series of n stimuli differing in level. In audition, because 
the various stimuli have to be presented in temporal suc-
cession, the tasks are often multiple-interval tasks (i.e., 
mI0-nAFC). In an nAFC task, one stimulus (the variable) 
changes its level across the trials, whereas the level of the 
others (the standards) is fixed. The difference between 
standard and variable ranges from below to above the 
subject’s detection (or discrimination) threshold. After 
each trial, the subject is asked to report which was the 
variable stimulus.

Figure 1 shows the hypothetical results of a yes/no task. 
The graph shows the relation between the stimulus level 
and the subject’s performance, together with one func-
tion fitting the hypothetical data. This function is referred 

MLP: A MATLAB toolbox for rapid and  
reliable auditory threshold estimation

MASSIMO GRASSI 
Università di Padova, Padua, Italy

AND

ALESSANDRO SORANZO
University of Teesside, Middlesbrough, England

In this article, we present MLP, a MATLAB toolbox enabling auditory thresholds estimation via the adaptive 
maximum likelihood procedure proposed by David Green (1990, 1993). This adaptive procedure is particularly 
appealing for those psychologists who need to estimate thresholds with a good degree of accuracy and in a 
short time. Together with a description of the toolbox, the present text provides an introduction to the threshold 
estimation theory and a theoretical explanation of the maximum likelihood adaptive procedure. MLP comes 
with a graphical interface, and it is provided with several built-in, classic psychoacoustics experiments ready 
to use at a mouse click.

Behavior Research Methods
2009, 41 (1), 20-28
doi:10.3758/BRM.41.1.20

B411 – BC – OG (MJA)

M. Grassi, massimo.grassi@unipd.it



MAXIMUM LIKELIHOOD PROCEDURE    21

where f (x) is the sigmoid function chosen by the experi-
menter (i.e., logistic, Weibull, cumulative Gaussian);  
determines the function’s slope, whereas  determines the 
displacement of the function along the abscissa (see Fig-
ure 2); and  and  are “psychological” parameters that 
will be discussed shortly.

Among the sigmoid functions, the logistic is the most 
widely used, because of its computational simplicity. Its 
formula is the following:
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Therefore, the corresponding psychometric function  
(in the toolbox, the logistic psychometric function is the 
Logistic.m function) is
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In the logistic psychometric function,  (often referred 
to as the midpoint) enables the displacement of the function 
along the stimulus-level axis. It corresponds to the average 
between  and  [i.e., ( )  (   )/2].  is the function 
slope—that is, the rate of change in the subject’s perfor-
mance with changes in stimulus level. The greater the ab-
solute value of , the steeper the psychometric function will 
be. Moreover, for positive values of  the function increases, 
whereas for negative values it decreases (see Figure 2). 
When the function is adapted to psychological needs,  and 
 come into play. Depending on the task type (i.e., yes/no 

or nAFC),  assumes a different meaning. There is, in fact, 
a major difference between these tasks: In yes/no tasks, the 
subject’s response criterion is not under the control of the 
experimenter; on the contrary, it is in nAFC tasks (Green & 
Swets, 1966; Stanislaw & Todorov, 1999). The reason for 
this difference is that in a yes/no task, when a yes response 
is collected for a very low stimulus level, it is difficult at-

to as the psychometric function. Independently from the 
task type and from the type of threshold being measured, 
behavioral data are fitted with a sigmoid function such as 
that represented in Figure 1. Different types of psycho-
metric functions can be adopted to fit experimental data—
for example, the logistic, the Weibull, and the cumulative 
Gaussian.

The general equation of a psychometric function is the 
following (adapted from Wichmann & Hill, 2001), repre-
senting a subject’s performance as a function of the stimu-
lus level x:

 (x; , , , )    (1    ) f (x; , ), (1)
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Figure 1. Results of a hypothetical yes/no task. The subject’s 
data are fitted with a logistic function (dashed curve). Note that 
this subject committed some false alarms (see later in the text) 
because, at the zero stimulus level (i.e., no stimulus actually pre-
sented), we can still observe a certain number of yes responses.

1

.8

.9

.6

.7

.4

.5

.3

Pr
op

or
tio

n 
of

 C
or

re
ct

 R
es

po
ns

es

0 2 4

Difference Between Standard and Variable (Arbitrary Units)

6 8 10

Figure 2. Five logistic psychometric functions. The gray (or black) 
functions have identical slopes. The dashed (or dotted) functions have 
identical midpoints. The gray solid function has a negative slope.
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the measurement of the threshold expensive in terms of an 
experiment’s time. This represents the major drawback of 
this class of procedures when the experimenter needs to 
estimate the subject’s threshold only. For the reason above, 
when they need to estimate a threshold, psychophysicists 
prefer adaptive over nonadaptive procedures. In adaptive 
procedures, the stimulus levels are selected at the same 
time as the experiment is running, depending on the sub-
ject’s answers. Adaptive procedures maximize the ratio 
between the number of stimuli presented at/near threshold 
and the number of stimuli presented far from threshold. 
Adaptive procedures can be grossly divided into two types: 
nonparametric (also known as staircases) and parametric. 
The only assumption made by nonparametric procedures 
is that the psychometric function is monotonic. Paramet-
ric procedures, on the contrary, make more assumptions. 
For example, they assume the shape of the psychometric 
function. Examples of nonparametric procedures are the 
method of limits by Fechner (1889), the simple up–down 
by von Békésy (1947), and the transformed up–down by 
Levitt (1971). Examples of parametric procedures are the 
PEST by Taylor and Creelman, (1967), the “best” PEST 
by Pentland (1980), and the QUEST by Watson and Pelli, 
(1983). The ML procedure studied by Green (1990, 1993) 
is a parametric procedure. Although the paternity of ML 
threshold estimation cannot be attributed directly to Green 
(Hall, 1968, and Pentland, 1980, for example, suggested 
this same approach), there is no doubt that he is the author 
who studied this approach in the most detail (Green, 1990, 
1993, 1995; Gu & Green, 1994; Saberi & Green, 1997).

Nonparametric procedures are generally used more 
than parametric ones, even if they involve some disadvan-
tage. The major one is that they tend to be more time con-
suming (e.g., Amitay, Irwin, Hawkey, et al., 2006; Leek, 
2001).3 Nonetheless, nonparametric procedures are used 
more than parametric ones, because they are theoretically 
simpler and can be easily implemented via conventional 
software (e.g., MEL, E-Prime), whereas parametric pro-
cedures are theoretically more complex and require more 
advanced programming skills. Given the current state of 
the art, we are aware of just one parametric procedure im-
plemented in a freely downloadable version—namely, the 
QUEST procedure (Brainard, 1997; Pelli, 1997; Watson 
& Pelli, 1983).

The Maximum Likelihood Procedure
The ML procedure is composed of two independent pro-

cesses: the maximum likelihood estimation and the stimulus 
selection policy (in the toolbox, these two processes are syn-
thesized in the FindThreshold.m function). The algorithm 
used by the ML procedure differs slightly for yes/no and 
nAFC tasks. Because the nAFC task can be used to estimate 
all types of thresholds, in the following paragraphs we will 
explain the ML procedure as applied to this task only. Read-
ers interested in how the procedure works in the yes/no task 
can refer to the original work by Green (1993).

Maximum likelihood estimation. Before the begin-
ning of the experiment, the experimenter hypothesizes 
several psychometric functions, called hypotheses. The 

tributing this response to a high subject sensitivity or to a 
bias toward the yes response. Biased responses are called 
false alarms, and they affect the lower limit of the psycho-
metric function, which can assume values greater than zero 
(see Figure 1). In other words, the probability of getting a 
yes response in the absence of the stimulus is greater than 
zero (Green, 1993). Hence, in yes/no tasks,  corresponds 
to the subject’s false alarm rate. False alarms are absent in 
nAFC tasks (Green & Swets, 1966; Stanislaw & Todorov, 
1999). In nAFC tasks, the level of the standard(s) is always 
different from the level of the variable, and trials have, 
therefore, correct and incorrect answers. When the differ-
ence in level between standard and variable is below the 
subject’s threshold (i.e., “when the stimulus level is low”) 
the probability that the subject will return a correct answer 
is determined by chance, and chance will depend on the 
number of alternatives. For this reason, in an nAFC task, 
 corresponds to chance level—that is, the reciprocal of 

the number of alternatives (e.g., 50% for 2AFC, 33% for 
3AFC, 25% for 4AFC, and so on).

The meaning of , on the contrary, is independent of the 
task and refers to another error. In both yes/no and nAFC 
tasks, subjects can commit errors independently from 
the stimulus level; these are lapses of attention. Lapses 
of attention are estimated to be a small percentage of the 
subject’s responses (i.e., 1%–5%; Saberi & Green, 1997; 
Wichmann & Hill, 2001), and they can affect the psycho-
metric function fitting by decreasing the upper limit of the 
function (see Wichmann & Hill, 2001, for an extended dis-
cussion). Attentional lapses are particularly problematic at 
high stimulus levels (in yes/no tasks) or high differences 
in level between the standard and the variable(s) (in nAFC 
tasks; Saberi & Green, 1997; Wichmann & Hill, 2001).

Researchers are often interested in estimating a single 
point of the psychometric function, which is a subject’s 
threshold. In probabilistic terms, the threshold corre-
sponds to an arbitrary point of the psychometric function 
p (hereafter referred to as the p-target) included between 
the lower and the upper limits of the function (i.e.,  and ). 
In other words, when we estimate a threshold, we search 
for the stimulus level eliciting the p-target proportion of 
yes (or correct) responses. Treutwein (1995) proposed 
that the p-target should be the middle of the psychometric 
function (e.g., 50% for yes/no tasks, 75% for 2AFC, 66% 
for 3AFC, etc.). However, other authors have suggested 
that higher values should be targeted (e.g., Amitay, Irwin, 
Hawkey, Cowan, & Moore, 2006; Baker & Rosen, 1998, 
2001; Green, 1990).

Thresholds can be estimated by means of two classes 
of procedures: adaptive and nonadaptive. In nonadaptive 
procedures—for example, the constant stimuli method—
the stimulus levels (or differences between standard and 
variable levels) are preset before the beginning of the ex-
periment. The stimuli should span from below to above a 
subject’s threshold. During the experiment, the stimuli are 
presented to the subject in random order, and the proportion 
of yes (or correct) responses is calculated for each stimu-
lus. In other words, the subject’s threshold will be interpo-
lated from a fully sampled psychometric function, making 
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more the estimate becomes accurate. Therefore, the best 
estimate is that returned by the last trial.

Stimulus selection policy. Once the most likely hy-
pothesis has been found, at which level does the next 
stimulus have to be presented? The common response is 
to assert that we should set the stimulus level at threshold 
(Simpson, 1989)—that is, at the p-target. Even after the 
very fist trial, the ML procedure has enough information to 
select the threshold level that is used as the stimulus level 
for the successive trial. The most likely hypothesis contains 
also the most likely subject’s threshold. The threshold will 
be the inverse function of the most likely hypothesis at the 
p-target (InvLogistic.m in the toolbox); therefore,

 

1 1 1
1p

pjt
t

ln ,
 

(6)

where pt is the p-target.
Green (1990, 1993) showed analytically that there is 

an optimal p-target that researchers should track (as well 
as many p-targets that experimenters should avoid; see 
the ML Procedure Guidelines section). This particular 
 p-target (often referred to as the sweet point) optimizes the 
estimate of the subject’s threshold, because the variance 
associated with the estimate of this particular p- target is 
smaller than the variance associated with any other pos-
sible p-target. The variance of the threshold estimate asso-
ciated with any p-target is equal to the binomial variance, 

(1  ), divided by the slope of the psychometric func-
tion squared; therefore,
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hypotheses have the same slope , attentional lapse rate , 
and chance level  but differ in midpoint  so as to cover 
the range of stimulus levels at which a subject’s threshold 
is supposed to be (see Figure 3).

An experiment might begin by providing the subject 
with a stimulus level that is above threshold. The subject’s 
response is then collected and utilized to calculate the 
likelihood of each hypothesis. Likelihood is calculated by 
means of the following function:

 
L H H x H xj i
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where L(Hj) is the likelihood of the jth hypothesized 
function and i is the trial number. The exponents C and 
W are equal to 1 and 0, respectively, when the response 
is correct, and to 0 and 1 otherwise. The product above 
can be simplified into a sum by means of a logarithmic 
transformation as follows (CalculateLikelihood.m in the 
toolbox):

 
L H C H x W H xj i i

i

n
log log .1

1  
(5)

Once the likelihood of each hypothesis has been cal-
culated, the ML procedure selects the highest likelihood 
hypothesis. This hypothesis is the one having the highest 
likelihood of resembling the actual subject’s psychometric 
function. The highest likelihood hypothesis will be identi-
fied by its midpoint .

The likelihood of the hypotheses is calculated after each 
trial. Hence, even after the very first trial, an ML estimate 
is returned by the procedure, although it may be highly 
inaccurate. However, the greater the number of trials, the 
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Figure 3. The solid gray function is the actual subject’s psychometric 
function. The black dotted functions are the hypotheses we set for run-
ning the maximum likelihood procedure and estimating the subject’s 
threshold. Note that the actual subject’s function is different from all of 
the hypothesized functions. However, within the hypothesized functions, 
the middle one is most similar to the subject’s psychometric function.
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columns 4–8). The likelihood of each hypothesis is calcu-
lated by means of Equation 5 and is reported in Table 2, 
row 1, columns 9–13. As is shown in Table 2, H1 results 
in the highest likelihood hypothesis. By means of Equa-
tion 6 we calculate the subject’s threshold: We take H1 and 
calculate the stimulus level that corresponds to 80.9% cor-
rect responses. The subject’s threshold result is equal to 2. 
Therefore, the stimulus level for the second trial will be 
set at 2. On the second trial, the subject gives a wrong re-
sponse. Each hypothesis expects, for this stimulus level, a 
certain proportion 1  p of wrong responses. This propor-
tion, together with that for the first trial, can be passed to 
Equation 5. After the likelihood calculation, the hypothesis 
that most likely resembles the subjects’ psychometric func-
tion is now H5. The stimulus level corresponding to the 
sweet point in H5 equals 8. The stimulus level for the third 
trial will be set at 8. The process just described is iterated 
until the subject has run the number of trials that we set at 
the beginning of the experiment.

The major benefit of the ML procedure is that it makes 
maximal use of the available data: The data from all the 
trials are used to estimate the subject’s threshold. If the 
experimenter has set the procedure appropriately, the ML 
procedure will arrive at the threshold more accurately than 
will a staircase procedure. A further advantage of the ML 
procedure is its rapidity. Green (1993) claimed that 12 tri-
als of ML are sufficient for a reliable threshold estimate. 
Although recent evidence suggests that this initial claim 
was too optimistic (e.g., Amitay, Irwin, Hawkey, et al., 
2006; Leek, Dubno, He, & Ahlstrom, 2000), the proce-
dure still remains a rapid one. An additional advantage of 
the procedure is the possibility of tracking any point of the 
psychometric function—in other words, the possibility of 
tracking any p-target. The reader, however, should know 
that this characteristic is shared also by some nonparamet-
ric procedures (e.g., Kaernbach, 1991). This characteristic 
is particularly appealing, for example, when the experi-
menter needs to replicate the results of a study targeting a 
specific point of the psychometric function.

where 2 is the derivative of the psychometric function 
slope squared. The best possible p-target is that minimiz-
ing the above ratio. In the case of the logistic function, the 
sweet point ( psw) can be calculated analytically as follows 
(Green, 1993):

 
psw

2 1 1 8

3 1 8
.
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If we assume that the subject does not produce any at-
tentional lapse (and this assumption is convenient; see 
the ML Procedure Guidelines section), the sweet point 
depends exclusively on . Table 1 compares sweet points 
and p-targets calculated as the arithmetic means between 
 and , for some  values. When  increases, the sweet 

point becomes correspondingly greater than the average 
between  and .

Altogether, the ML procedure can be understood better 
with an example (see Figure 3 and Table 2). Let us suppose 
that we want to estimate a detection threshold by means of 
a 2AFC task. We select five hypotheses whose midpoints 
range from ~1.5 level units to ~7.5 level units, so that the 
step between each midpoint is equal to 1.5 level units (see 
Figure 3). We choose to track the sweet point that, in 2AFC 
tasks, is the stimulus eliciting 80.9% correct responses (as 
reported in Table 1). We arbitrarily set the first variable 
stimulus level to 11 and present the stimuli to the subject. 
Let us suppose that the subject’s answer is correct (Table 2, 
row 1, column 3). Each hypothesis expects, for that level, 
a certain proportion p of correct responses (Table 2, row 1, 

Table 1 
Comparison Between Sweet Point and the Arithmetic Mean 

Between  and  for the Logistic Function

 (%)  Average( , ) (%)  Sweet Point (%)  

0 50.0 50.0
25 (i.e., 4AFC) 62.5 68.3
33 (i.e., 3AFC) 66.6 72.9

 50 (i.e., 2AFC)  75.0  80.9  

Table 2 
The Possible Development of an ML Procedure

Trial  Level  Answer  H1  H2  H3  H4  H5  L(H1)  L(H2)  L(H3)  L(H4)  L(H5)  Th

 1 11 c 1.00 1.00 1.00 1.00 .99 0.00 0.00 0.00 0.00 0.02 2
 2 2 w .19 .37 .46 .49 .50 1.66 1.00 0.77 0.71 0.71 8
 3 8 c 1.00 1.00 .99 .94 .81 1.66 1.00 0.79 0.78 0.92 6.5
 4 6.5 c 1.00 .99 .94 .81 .63 1.66 1.02 0.85 0.99 1.38 5
 5 5 c .99 .94 .81 .63 .54 1.67 1.08 1.06 1.45 2.00 5
 6 5 c .01 .06 .19 .37 .46 1.69 1.15 1.27 1.90 2.62 3.5
 7 3.5 c .94 .81 .63 .54 .51 1.75 1.36 1.73 2.53 3.30 3.5
 8 3.5 w .06 .19 .37 .46 .49 4.56 3.01 2.73 3.30 4.01 5
 9 5 c .99 .94 .81 .63 .54 4.57 3.08 2.94 3.75 4.63 5
10 5 w .01 .06 .19 .37 .46 8.78 5.88 4.60 4.76 5.40 5
11 5 c .99 .94 .81 .63 .54 8.79 5.94 4.81 5.21 6.02 5
12 5 c .99 .94 .81 .63 .54 8.81 6.00 5.02 5.67 6.65 5

Note—The table represents numerically the example reported in Figure 3. In the table, “trial” is the trial number, “level” is the dif-
ference in level between standard and variable in a detection task, and “answer” is the subject’s answer (“c,” correct response; “w,” 
wrong response). Columns H1–H5 show the probability of correct/wrong response predicted by each of the five hypotheses set 
for the maximum likelihood procedure. The successive columns [i.e., from L(H1) to L(H5)] are the likelihood of each hypothesis 
given the subject’s answers to the stimulus levels presented thus far. The highest likelihood hypothesis is given in italics. The last 
column (i.e., “Th”) is the estimate of the subject’s threshold calculated at the end of each trial. In the present example, we track 
a p-target that is the sweet point of a logistic function for a 2AFC task (i.e., 80.9%).
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tics experiments on a large (N  340) number of adult 
subjects. The MLP user running these experiments can 
thus compare his/her own results with those reported in 
that study.6 Built-in experiments come with default pa-
rameters. The user can, however, change parameters at will 
(see the ML Procedure Guidelines section). If changes are 
made and saved, they will be kept until the next “SAVE 
DEFAULTS” command is called. When the user presses 
“START” the experiment begins, and the stimuli are 
presented to the subject. In all the built-in experiments, 
the subject responds by pressing the key numbers of the 
computer keyboard. In nI-nAFC experiments, the subject 
reports the temporal position of the variable stimulus. For 
example, in a 4AFC task, if the subject thinks that the 
variable stimulus was the third stimulus presented, he or 
she has to press “3.” In yes/no tasks, the “1” number cor-
responds to the answer “yes, I perceive/detect,” and any 
other number (e.g, “0”) corresponds to the “no, I did not 
perceive/detect” answer. Keypresses must be followed by 
the “Return” key. After each block of trials, the subject’s 
threshold is echoed on the computer screen. MLP saves 
two data files (tab-delimited, flat format, text files) in 
the MATLAB current directory. The first is an extended 
data file that contains all the experiments’ events—that is, 
subject number, name, sex, age and note, block number, 
trial number, level of the stimulus presented, subject’s re-
sponse, threshold estimated after each trial, and estimated 
false alarm rate  (please note that this last estimate is for 
yes/no tasks only). In this file, the subject’s responses are 
coded as “1” (“yes,” or correct) and “0” (“no,” or wrong). 
The name of this file can be set by the user through the 
graphical interface. The second data file contains only the 
subject’s threshold, and it is saved after each subject. By 
default, the name of this file is the subject’s name. If the 
user does not input the subject’s name, the file is called 
“untitled.txt.”

In the case in which the specifics of the built-in experi-
ments do not match the experimenter’s needs, he or she 
can edit them and adapt them to his/her own needs. The 

Besides its advantages, the ML procedure also involves 
some disadvantages. The major is that both the shape and 
the slope of the hypothesized psychometric functions are 
set by the experimenter before running the experiment. 
These parameters could be unknown, and the selected 
ones might not coincide with the “actual” ones (see Fig-
ure 3). This disadvantage, however, does not seem to af-
fect experiment reliability significantly. By means of sev-
eral simulations, Green evaluated whether the mismatch 
between the “actual” subject’s psychometric function and 
the psychometric function hypothesized by the procedure 
affects the threshold estimate. From these simulations, it 
emerged that (1) a shape mismatch (Green [1990] com-
pared logistic and Gaussian) does not have an evident effect 
on the threshold estimate and (2) a slope mismatch can af-
fect the threshold estimate by increasing estimate variance 
(Green, 1990, 1993). By the same token, the experimenter 
may not know in advance the rate of attentional lapses 
( ) or the false alarm tendency ( ) of the subject. In three 
articles, Green and colleagues (Green, 1993, 1995; Gu & 
Green, 1994) investigated whether the lack of knowledge 
of these two parameters affects the threshold estimate and 
whether these two parameters can be estimated by the ML 
procedure together with the subject’s threshold.4 Lapses 
of attention affect the threshold estimation when they are 
numerous and occur in the very first trials (Green, 1995). 
In particular, the bias produced by lapses of attention is 
large if they occur within the first five trials but becomes 
almost negligible in the later ones (Gu & Green, 1994). 
Also, false alarms can bias the threshold estimate (Green, 
1993; Gu & Green, 1994). However, the ML procedure 
can be used to make a rough estimate of the subject’s false 
alarm rate. Solutions to the problems just presented will 
be given in the ML Procedure Guidelines section.

The ML Toolbox
MLP has been developed to work with MATLAB 7.0 or 

higher5 and can be downloaded from the following Web 
page: www.psy.unipd.it/~grassi/mlp.html. In the Web 
page, the user will find the complete list of the toolbox’s 
functions and the most updated list of the available experi-
ments, together with a brief description of them. At the 
moment we are writing, MLP is provided with 24 built-in 
experiments. MLP works with any operative system and 
does not require additional MATLAB toolboxes. All MLP 
functions are compressed in a zip archive that the user 
needs to expand and copy into the MATLAB “toolbox” 
folder. The user needs also to “add with subfolder” all 
the toolbox contents in the MATLAB path. All functions 
have a command line help. The help can be seen by typing 
“help” followed by the function name at the MATLAB 
prompt.

To start an experiment, type “mlp” (i.e., the main func-
tion) at the MATLAB prompt. This calls up a graphical 
interface (see Figure 4). Now the user has to select the 
experiment he or she wants to run. The majority of the 
built-in experiments are classic psychoacoustics experi-
ments. Some are “translations” for the ML procedure of 
a subset of experiments performed by Kidd, Watson, and 
Gygi (2007). These authors ran 19 classic psychoacous-

Figure 4. The MLP graphical interface.
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old. Green (1993) showed that the number of hypotheses 
set to fill this range does not affect the standard deviation 
of the threshold estimate. The number of hypotheses af-
fects, however, how close the final threshold estimate will 
be to the actual threshold. For this reason, our sugges-
tion is to use the highest possible number of hypotheses 
compatible with computer potentiality. The computational 
load required by the procedure is, in fact, proportional to 
the number of hypotheses. Finally, the range of the hy-
potheses can be spaced either linearly or logarithmically. 
We recommend the use of logarithmic spacing for physi-
cal quantities expressed on a linear scale (e.g., frequency, 
duration, etc.) and linear spacing for units that are already 
expressed logarithmically (e.g., sound pressure level when 
expressed in decibels).

The next hypothesis parameter one should set pertains 
to the yes/no task only. It is the false alarm rate . In the 
current version of the toolbox, this parameter ranges be-
tween five possible fixed values: 0%, 10%, 20%, 30%, 
and 40%. The most likely of these  values is returned 
after each trial in the MLP data file. If the subject has a 
high false alarm rate, the threshold could be underesti-
mated. In practice, the subject reports being able to detect 
very low-level stimuli. Consequently, the ML procedure 
will look for the subject’s threshold also in the very low-
level range. However, the ML procedure returns only a 
rough estimate of the subject’s false alarm rate. In particu-
lar, Green (1993) showed that the ML procedure underes-
timates the subject’s false alarm rate. The underestima-
tion of the false alarm rate can be reduced by introducing 
a number of catch trials during threshold estimation. In 
catch trials, the stimulus level is set either to zero or to the 
minimum level of the range in which one is looking for 
the subject’s threshold (Gu & Green, 1994; Leek et al., 
2000). The answer to catch trials (which is expected to be 
no unless the subject is producing a biased response) is 
included in the calculation of the hypotheses’ likelihood. 
With MLP, the user has the option to include catch trials 
in the ML procedure to reduce the underestimation of the 
subject’s false alarm rate. Catch trials will be presented 
at any moment of the threshold estimation, excluding the 
very first trial. The occurrence of catch trials is deter-
mined probabilistically by a proportion that the user can 
set in the graphical interface. During the ML procedure, 
when a catch trial will occur, the stimulus level will be set 
to the minimum level of the range in which one is looking 
for the subject’s threshold (i.e., the first midpoint). We 
recommend keeping the catch trial rate to about 20% of 
the total number of trials (Leek et al., 2000).

After the selection of the parameters for the ML proce-
dure, the parameter for the stimulus selection policy (i.e., 
the p-target) has to be chosen. The criterion for selecting 
a p-target differs slightly between yes/no and nAFC tasks. 
In nAFC tasks, Treutwein (1995) suggested tracking the 
middle of the psychometric function (i.e., 75% for 2AFC, 
66% for 3AFC, etc.). As we wrote previously, Green (1990, 
1993) suggested tracking the sweet point, which is gener-
ally higher than the middle of the psychometric function 
(see Table 1). Baker and Rosen (1998, 2001) and Amitay, 
Irwin, Hawkey, et al. (2006) tracked p-targets even higher 

characteristics of the sounds of each experiment are writ-
ten at the beginning of the experiment.m files and can be 
easily changed. More advanced MATLAB users can write 
their own experiments by taking as an example any of the 
built-in experiments. The MLP Web page provides de-
tailed instructions on how to write custom experiments.

ML Procedure Guidelines
In this section, we will provide the reader with a set of 

guidelines for a fruitful use of the ML procedure by means 
of MLP. Users who want to edit existing experiments (or 
create their own) can use these guidelines for a fruitful 
optimization of the threshold search.

The first decision the experimenter has to make before 
starting a detection threshold estimation is about the kind 
of task the subjects will perform (we remind the reader 
that discrimination thresholds must be estimated via nAFC 
tasks only). The choice of the specific task depends on two 
factors: the desired experiment duration and the desired 
robustness of the threshold estimation (yes/no experiments 
are usually shorter). However, as was previously mentioned, 
in yes/no tasks, the subject’s bias is not under the control of 
the experimenter. For this reason, thresholds gathered with 
yes/no tasks can be less robust than those gathered with 
nAFC tasks.7 In brief, if duration is essential, we suggest 
using the yes/no task, whereas if robustness is essential, 
the nAFC task should be preferred. A corollary question 
is about the number of alternatives in an nAFC task. Once 
again, there is a trade-off between duration and robustness. 
An increase in the number of alternatives leads to an aug-
mented robustness of the threshold estimation (Schlauch 
& Rose, 1990), but it augments the experiment duration 
also. For the ML procedure, Amitay, Irwin, Hawkey, et al. 
(2006) suggest using three alternatives.

Once the task has been chosen, the experimenter has 
to set the parameters of the ML procedure, such as slope, 
range, and number of hypothesis. As we wrote previously, 
the ML procedure uses, for the threshold estimation, a set 
of hypotheses (i.e., a set of psychometric functions) with 
identical slope, but differing in the position along the ab-
scissa over a certain range. Ideally, the slope of the hy-
potheses should be identical to the subject’s psychometric 
function slope, but occasionally this parameter could be 
unknown. The choice of the wrong slope can affect the 
threshold estimate—in particular, when the chosen slope 
is (much) less steep than the actual one (Green, 1990, 
1993). When the actual slope is unknown, the experi-
menter might need to estimate it (at least roughly) before 
starting the experiment. The classic method for perform-
ing this estimation is to run a constant stimuli experiment 
(e.g., Saberi & Green, 1997) and successively interpolate 
the subject’s performance with the logistic psychometric 
function.

The selection of range and number of hypotheses is less 
problematic than the selection of the hypotheses’ slope. The 
range of the hypotheses must cover abundantly the range 
of stimuli levels where we expect the subject’s threshold 
is. In practice, the midpoint of the first hypothesis should 
be well below the subject’s threshold, whereas that of the 
last hypothesis should be well above the subject’s thresh-
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liable threshold estimates can be obtained with very few 
trials. Green (1993) showed that 12 trials may be enough. 
That initial claim was perhaps too optimistic. Recent 
studies have suggested that an optimal threshold estimate 
should require about 24 (Leek et al., 2000) or about 30 
(Amitay, Irwin, Hawkey, et al., 2006) trials; that still re-
mains a small figure.8

The very last thing the experimenter has to decide be-
fore starting the experiment is the level of the first stimu-
lus that the procedure will present to the subject. This level 
is the only one set by the experimenter. Green (1993) dem-
onstrated that the starting level value has no effect on the 
threshold estimate. We suggest setting this level relatively 
high, in order to offer the subject an easy first trial.

After the ML procedure has terminated, there is one 
last thing the experimenter can do to further control the 
goodness of the threshold estimates: controlling for at-
tentional lapses. If the subject produces attentional lapses, 
the threshold is likely to be overestimated. The reason is 
simple. The subject states that he or she is not able to 
detect (or to discriminate) the very high-level stimulus. 
Therefore, the ML procedure will look for the subject’s 
threshold also in a very high-level range. However, atten-
tional lapses affect the threshold estimate only if they occur 
within the first five trials (Gu & Green, 1994). Blocks of 
trials characterized by attentional lapses are easy to spot 
(and remove) in the data analysis. Figure 5 compares six 

than the sweet point. As a rule of thumb, we suggest track-
ing a p-target not lower than the sweet point.

The selection of the p-target for the yes/no task is 
slightly more complex. The general tendency is to track 
the middle of the psychometric function (i.e., 50%). How-
ever, this p-target could be too low, especially when work-
ing with subjects that are known to have a high false alarm 
rate (e.g., children). Unlike with nAFC tasks, with yes/no 
tasks the calculation of the sweet point is not straightfor-
ward, because the sweet point depends on the subject’s 
false alarm rate (see Equation 8), which is unknown. In 
summation, if we presume that subjects are reliable, we 
can track the middle of the psychometric function (i.e., 
50%). If, on the contrary, we presume that subjects are un-
reliable, we have to track a higher p-target. Green (1993) 
tracked the average between the minimum and the maxi-
mum sweet points of the false alarm range expected to be 
observed. In other words, if one expects a false alarm rate 
ranging from 0% to 40%, one will track 63.1%—that is, 
the average between the sweet point for a 0% false alarm 
rate (i.e., 50%) and the sweet point for a 40% false alarm 
rate (i.e., 76.2%). This is the option we implemented in 
the toolbox.

Now that all the parameters of the ML procedure have 
been set, one has to decide the length of the experiment—
that is, the number of trials. As we wrote previously, one 
of the major advantages of ML method is its rapidity. Re-

120

115

110

105

100

120

115

110

105

100

120

115

110

105

100

St
im

ul
us

 L
ev

el
 (A

rb
itr

ar
y 

U
ni

ts
)

1

Trial Number

3 5 7 9 11 13 15 1 3 5 7 9 11 13 15

No lapse 1st

2nd 3rd

4th 5th

Figure 5. Stimulus level presented by the maximum likelihood procedure as a 
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NOTES

1. Source: ISI Thompson Web of Science.
2. In this article, the term level refers to both intensive (e.g., lumi-

nance, sound pressure) and nonintensive (e.g., light wavelengths, acous-
tic frequency) physical quantities. These two classes of physical quan-
tities are perceptually mapped into the so-called prothetic sensations 
(e.g., brightness, loudness), as opposed to metathetic sensations (e.g., 
perceived color and pitch) (Stevens, 1957; Stevens & Galanter, 1957).

3. This is the case for the most widely used nonparametric procedure 
(i.e., transformed up–down; Levitt, 1971), which requires about twice as 
many trials as the ML procedure (Leek et al., 2000).

4. The ML algorithm can be used to estimate all psychometric func-
tion parameters (i.e., , , and )—thus, the subject’s whole psychomet-
ric function. However, the estimation of the whole psychometric function 
requires thousands of trials (García-Pérez & Alcalá-Quintana, 2005), 
and it is therefore performed exclusively in Monte Carlo simulations.

5. Unfortunately, some of the graphical characteristics of the toolbox 
are incompatible with older versions of MATLAB.

6. Readers interested in an identical replicate of the experiments run by 
Kidd, Watson, and Gygi (2007)—and thus in a direct comparison with the 
published results—should refer to the Test of Basic Auditory Capabilities 
by the same authors (Communication Disorders Technologies Inc.).

7. There are some exceptions to this. Green (1995) found that, in some 
conditions, the threshold estimates gathered with yes/no tasks were more 
robust than those gathered with nAFC tasks.

8. The literature reports a way to further shorten the length of ex-
periments, which is to halt the ML procedure when the variance of the 
threshold estimation drops below a certain preset value (Leek et al., 
2000). As we wrote previously, the ML procedure returns a threshold 
estimate after each trial. For Leek et al., the ML procedure was halted 
when the variance of the last 10 threshold estimates was smaller than a 
certain preset value. This option is not implemented in the toolbox.

(Manuscript received April 21, 2008; 
revision accepted for publication June 24, 2008.)

blocks of trials. In five of these blocks, the ML procedure 
is “affected” by an attentional lapse that occurred in the 
first, second, third, fourth, or fifth trial of the block.
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